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The viscosity of a one-component polarizable fluid in an electric field is studied by computer simula-
tions. The fluid viscosity increases with the field through three stages. In a weak field, the fluid remains
Newtonian, although its viscosity increases. At this stage, while drifting in the flow direction, particles
diffuse in the direction perpendicular to the flow. In an intermediate electric field, the fluid has tilted
and broken chains moving with the flow and the fluid becomes non-Newtonian. The viscosity 1 and the
shear rate 7 have the relationship 7=1¢e ~?", where 7 is the relaxation time and 7, is exponentially pro-
portional to the dipolar interaction energy and the volume fraction. In a strong electric field, the fluid
contains condensed chains that provide yield stress and hysteresis.

PACS number(s): 82.70.Gg, 61.90.+d, 64.90.+b

I. INTRODUCTION

One-component polarizable fluids are interesting phys-
ics systems which have important applications. We can
define these fluids as aggregates of particles which can be
strongly polarized in an external electric field. If the par-
ticles have a permanent dipole moment, the polarization
can be a result of alignment of the dipoles in the field
direction. If the particles have no permanent dipole mo-
ment, the polarization can be induced by the electric
field because of the dielectric-constant or conductivity
mismatch between the particles and the medium.

The early work of Andrade and Dodd showed that
one-component polarizable liquids placed in a strong
electric field would have a significant increase of viscosity
while nearly no effect was seen on the viscosity of nonpo-
lar liquids [1]. A recent discovery of the electrorheologi-
cal (ER) effect of liquid crystal polymer solution greatly
enhances the interest of research in this area [2].

A conventional ER fluid is made of fine dielectric par-
ticles suspended in a liquid of low dielectric constant
[3—7]. The large contrast of dielectric constant between
the particles and the liquid makes the system easily polar-
izable in an electric field. The electric-field induced
change of viscosity in ER fluids has provided opportuni-
ties for many new technological applications [3]. The
crucial point of ER application is now in materials tech-
nology. Because of the density mismatch between the
particles and the liquid, settling is a problem in some con-
ventional ER fluids. Some applications, such as ER
clutch, require ER fluids with a much stronger yield
stress. The strong ER effect of liquid crystal polymer
solutions has broadened our horizon in search for good
ER fluids. Especially, since one-component polarizable
liquids have no problem in settling, they may be suitable
for applications which cannot tolerate any settling.

In this paper, we will investigate the viscosity of one-
component polarizable liquid in Couette geometry via
computer simulations. Our model and the details of
simulations are presented in Sec. II. In Sec. III, we dis-
cuss our results. Our findings indicate that the viscosity

1063-651X/95/52(1)/813(6)/$06.00 52

of one-component polarizable fluid increases with an elec-
tric field through three stages. In a weak field, the fluid
remains Newtonian although its viscosity increases with
the field. At this stage, while drifting in the flow direc-
tion, particles diffuse in the direction perpendicular to the
flow. In an intermediate electric field, the fluid has tilted
and broken chains moving with the flow and the fluid be-
comes non-Newtonian. The viscosity 7 and the shear rate
7 has the following relationship n=mye ~7", where 7 is a
relaxation time and 7, is exponentially proportional to
the dipolar energy and the volume fraction. In a strong
electric field, the fluid contains condensed chains which
produce a yield stress and hysteresis.

II. MODEL AND SIMULATIONS

Our three-dimensional system is based on the dipole
model frequently used in the study of ER fluids [8]. This
model is reasonably good when the particle concentration
is low, although it has limitation when the concentration
is high. We have N particles placed between two parallel
electrodes which are planes z=L /2 and z=—L /2 (see
Fig. 1). The motion of each particle is determined by a
classical motion equation. The electric force on each par-
ticle is the sum of dipolar forces exerted by other parti-
cles as well as by images. Experiments have shown that
an electric field parallel to the flow direction has little
effect on the liquid viscosity. Therefore, we examine the
case in which the flow is moving along the x direction
while the applied electric field is along the z direction. In
both x and y directions, a periodic boundary condition is
imposed. Thus, a particle in Fig. 1 moving out of the box
returns to the box from the opposite side with the same
velocity.

We introduce two wall layers which are adjacent to
each electrode, respectively. The particles in the wall lay-
ers are distinct from the particles in the flow (bulk parti-
cles). While the bulk particles are allowed to move in all
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FIG. 1. A sketch of our model.

three directions, the wall-layer particles are only allowed
to move in the x and y directions and are not allowed to
exchange with the bulk particles. Thus, the wall particles
cannot leave the electrode they attach. In addition to the
dipolar interactions, the wall particles adjacent to the top
electrode experience an external force in the x direction
and the wall particles adjacent to the bottom electrode
experience an external force in the opposite x direction.
As these shear forces act on the wall particles, a velocity
gradient in the z direction is established.

Our wall layers are based on observations made in ER
fluid flow experiments which find two layers of dielectric
particles cumulated on the two electrodes, distinct from
the particles in the flow. Ashurst and Hoover also used
similar wall layers in their simulation of dense fluid shear
flow [9].

In an electric field, each partlcle obtains an induced
dipole moment, p=ae;(c/2)} E,, where a=(e,

—€7)/(€,+2€,) and E. 1s the local field. The motlon
of the ith particle is described by a classical equation

md?7, /dt*=F, , (2.1)

where F, ; is the total force acting on it.
The dipolar force acting on the particle at 7; by a parti-
cle at 7; is given by

f,-j 4[e(1—3cose )—

€sin(26,;)] ,
€rTij

(2.2)

where 7;;=7; —F; and 0=6;, <7 /2 is the angle between
the z dlrectlon and the joint line of the two dipoles. We
use €, as a unit vector parallel to 7;; and €, as a unit vec-
tor parallel to €, X (¢, X Ey).

A dipole p inside the capacitor at 7;=(x;,y;,z;) pro-
duces an infinite number of images at (x;,y;, —z;) and
(x;,y;,2Lktz;) for k ==%1,%2,.... The force between a
dipole and an image has the same form as Eq. (2.2). The
Jjth particle and its infinite images produce an electric
force on the ith particle [8,10],

foo= p? 2 4s21-r3(x,»-xj) 1 STPy;
ij,x efL4s=1 pij L
% sT7Z; s7z;
0s cos ,
¢ L
p: 24 373y, —y;) STP;;
ftJy 4 2 : : Ky -
€f L s=1 Pij L
% s7z; s7Z; 2.3)
cos | —— | cos | — , .
STP;; smz;
3 3 ij . i
fij2= fL4s§14s K, I3 sin | —
S7TZj
X cos ,
where p;; = \/(x —X; 2+(y, —Y; > and K, and K, are

modified Bessel functlons The force on the ith particle by
its own images is in the z direction and denoted as f i self

ser_3p? |13 11
iz g 4 4 4 :
€f z; (z;—sL) (z; +sL)

(2.4)

In addition to the dipolar interactions, two spheres re-
pel each other strongly whenever they are colliding with
each other. This short-range repulsive force is important
in preventing particles from collapsing. There have been
several forms of this short-range interaction in the study
of ER fluids, ranging from a hard-core interaction, soft-
core, to a power rule [8,11]. In our model, we follow
Melrose [12] to use a power rule,

,;ep~r /r"+2 , (2.5)

where 7; = ,-——7]-. It is clear that as n increases, the
short-range force becomes stronger. The results reported
here are related to n =23, a value large enough to
prevent the particles from collapsing. We have checked
the situation of a different n and found that although the
value of n affects the initial motion of the particles be-
cause of collisions, it has little effect on the final value of
viscosity which is measured after a dynamic equilibrium
is established.

When a particle in the flow collides with an electrode,
we take the collision as a complete elastic collision which
maintains the particle’s speed but reverses the sign of the
z component of the velocity. This arrangement prevents
any particle in the flow from moving out of the elec-
trodes. ~

Now for the bulk particles F; in Eq. (2.1) is given by

F=3(fy+fim+fr. 2.6)

JFi

As mentioned earlier, the wall particles are experiencing
additional external forces in the x direction which pro-
duce the shear flow.

A viscous flow always produces heat which may cause
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temperature increase if the heat is not removed. In our
simulations, the temperature in a layer is defined by the
following equation:

m —
T=—T S5 )
2y (N, —1) 2 Vi)

(2.7)
where N, is the number of particles in the layer and the
average velocity v, is given by

v,= 3 7,/N, . (2.8)

i=1
In Eq. (2.7) the denominator has N, —1 rather than N,
because the center of mass is also moving. To maintain
the temperature at a constant T, we apply a renormal-
ization procedure to the wall layers and the two layers
immediately adjacent to the wall layers.

7R=%,+@ -0,V To/T , 2.9

where T is determined by Eq. (2.7) and U, is given in Eq.
(2.8). This is equivalent to removing heat in the system
from the two electrodes.

In our simulations, the electrodes have Lx=Ly=16a
while the distance between the electrodes is L =14a. We
denote a as the particle radius. Each wall layer has 20
particles. There are another 100 particles in the bulk.
The volume fraction is thus 16.4% which is quite low and
makes the dipole model valid. Our theoretical calcula-
tion has already shown that when L, < 124, a single-chain
structure is the preferred solid structure in ER fluids;
only when L,>12a, ER fluids are able to have thick
columns [13]. In real experiments, a has the order of mi-
crometer, while L, has the order of millimeter. There-
fore, we take L, = 14a to satisfy the above condition.

Initially, the particles are distributed randomly into the
space with a velocities distribution corresponding to T,.
The applied forces on the wall-layer particles drive them
to flow. The parameter A measures the dipolar energy to
the thermal energy and also indicates the strength of the
electric field [14],

A=p2/(a%kyT,) . (2.10)

In our simulations, we use \/ mkpg T/a* as the unit of
viscosity, maz/kBT as the unit of time, and
V kT /ma? as the unit of shear rate.

We have applied a fourth-order Runge-Kutta method
of a fixed step size to integrate Eq. (2.1). The step size is
0.02Y"ma?/(kyzT,). If Ty=300 K, a =1.0 um, and the
particles have density p=1.2 g/cm? then one step is
about 2X107 3 s.

For one value of A, we vary the shear stress to obtain
the effective viscosity as a function of ¥ and A. The varia-
tion of shear stress is as smooth as possible. After the
shear stress changes, we run the system at least 20000
steps to establish a dynamic equilibrium state. For the
above example, 20000 steps correspond to 0.4 s. In the
dynamic equilibrium state, we measure the velocity dis-
tribution and determine the shear rate y. In most cases,

TABLE I. Shear flow at A=55 and y =0.0947V kT /ma>.

Layer Average no. of particles Average v, Temperature
1 19.3 —0.383 1.000
2 19.2 —0.172 1.048
3 19.2 0.023 1.057
4 19.2 0.199 1.047
5 19.5 0.379 1.000

we find a laminate flow. If the total force acting on one
wall layer is F, then the shear stress S =F/(L,L,). The
effective viscosity is determined by

n=Ss/v . (2.11)

III. RESULTS AND DISCUSSIONS

A typical velocity profile and average temperature in
each flow layer is listed in Table I. As mentioned in Sec.
I1I, at each step, we extricate heat from the two wall lay-
ers and the two layers immediately adjacent to the wall
layers. Table I shows that this approach works well in
keeping the bulk nearly uniform in temperature although
the middle layer still has a slightly higher temperature.
This situation is normal because we assume that the heat
dissipates from the two electrodes. In Fig. 2, we plot the
velocity distribution. It is clear that the system has a
laminate flow and the slope of the velocity line is related
to the shear rate. When the external shear force is small,
the velocity distribution may deviate from a straight line.
The example in Fig. 3 shows that the middle layers have
a lower shear rate than the layers close to the electrodes.
It is also understandable that there are more fluctuations
when the average shear rate is low.

A. Newtonian flow

At a low A, i.e., a weak field, our simulations find a
good Newtonian flow. In Fig. 4, we plot the effective
viscosity as a function of shear rate at A=10 and 35. As
shown there, the effective viscosity is independent on the
shear rate. The parallel line is a clear indication of a
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FIG. 2. Velocity profile of a laminate flow at A=35 and
7=0.095V"kp T /ma>.



816 J. M. SUN AND R. TAO 52

6 —
4 A
o Zj A
£ of A
< L
=2t A
N L
~4la
-6 L N ! L I N 1 " |
-0.02 —-0.01 0.00 0.01 0.02

V. (unit:/EaT/m)

FIG. 3. Velocity profile at A=90 and y =0.004V" kT /ma>.
When the external shear force is small, the middle layers have a
lower shear rate than the layers close to the electrodes.

Newtonian fluid. The result is similar to a neutral dilute
fluid. In our simulations, we also have a low volume frac-
tion 16.4%.

B. Non-Newtonian flow

At a high field, the flow shows non-Newtonian charac-
teristics. In Fig. 5, we plot the viscosity as a function of
the shear rate y for A=55, 70, and 80. The effective
viscosity is increasing as the shear rate is reducing. The
changes in the rheological behaviors can be interpreted as
a transition from the streaming type of transport to a po-
tential type of transport where the interchanges of
momentum between layers are mainly accomplished
through potential interaction.

For a fluid with a strong intermolecular interaction,
the dependence of viscosity on shear rate can be
described by the Ree-Eyring relation [15],
n=(n/7y)sinh~!(7y) where 7, is the viscosity at zero
shear rate and 7 is the relaxation time of the system.

In ER fluids, a power rule p~7 ~* has been suggested
[16]. This suggestion is based on a rotation of induced
ER solid structure in a shear flow. Therefore, in order to
have the power rule, the ER fluid must have nonzero
yield stress.

However, our system at A=55-80 still has zero shear
stress for ¥ =0; therefore, it is still a liquid and the power
rule does not apply. The viscosity is plotted in Fig. 5.
From the curve, we have found that the viscosity fits the
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FIG.4 Viscosity versus shear rate at small A (A=10 and 35).

.
)

=

£28

£

£23 ® =80

S8l ® =70

218 A A=55

213

808t

203 AA - k--k -
> 70.00 0.02 0.04 0.06 0.08 0.10 0.12

shear rate (unit: /k;7/ma )

FIG. 5. Viscosity versus shear rate at large A (A=55, 70, and
80).

following relationship:

n=n0e 7", (3.1)
where 7 can be also defined as a relaxation time. For
A=55, 70, and 80 we have 7=3.0, 7.55, and 14.53 (unit:
\/ ma2/k g T). The relaxation time increases with the in-
creasing of the electric field. This is consistent with the
fact that the stronger the electric field is, the longer is the
time for the system to reach its dynamic equilibrium
state.

The Eyring theory has viscosity of a normal liquid ex-
pressed as [17]

n=A exp(AE /kzT) , (3.2)

where AE is the energy barrier required to open up a hole
for the transposed particle to move from one potential
minimum to another minimum. Similar to the Eyring
theory, in our polarized liquid, AE should also be related
to an energy barrier to open a hole to let a particle move
from one potential minimum to another one. The leading
term of this energy barrier has the order of the dipolar
energy p2/a>. In addition, it is easy to open a hole when
the volume fraction ¢ is low and vice versa. Therefore,
we expect the viscosity at zero shear rate, 7, has the fol-

lowing form:
No=cqexplbdp’/(a’kpT)], (3.3)

where ¢, and b are constants. In Fig. 6, we plot 7,
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FIG. 6. Viscosity at zero shear rate versus A. The solid line is
the exponential fitting.
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FIG. 7. Shear stress versus shear rate at A=90. The
discharge does not follow the same route of the charge curve,
indicating a hysteresis.

against A and find the curve fits the above relationship
very well. The two fitting constants are ¢,=0.014 and
b =0.402. We want to emphasize that Eq. (3.3) is only
valid for the liquid state. In deriving Eq. (3.3), we only
consider the contribution of dipolar interactions. There-
fore, when A is small, Eq. (3.3) may underestimate the
viscosity, because the other contributions to the viscosity
cannot be ignored.

C. Bingham plastic

At A=90, we observe a different phenomenon. There is
a yield stress which has a value between 2kzT/a> to
4kp T /a®. The particles do not move when the applied
stress is below the yield stress. Only if the applied shear
stress exceeds the yield stress, a flow is formed. There-
fore, our system becomes a Bingham plastic. There is
also clearly a hysteresis. The relationship between shear
rate and shear stress depends on the flow history now.
Similar hysteresis in experiments of ER fluids has been
reported by Lemaire, Bossis, and Grasselli [18]. In our
simulations, we first increase the shear stress at a rate
2kpT/a® in 100000 time steps. Then we decrease the
shear stress at the same rate. The simulation result is
shown in Fig. 7. It is clear that the discharge does not
follow the same route of the charge curve, indicating a
hysteresis. The difference in the shear rate at a same
shear stress can be as high as 60%. At this stage, the
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FIG. 8. A typical particle motion in the z direction at
different electric fields. At a small electric field, the particles
wander up and down in the z direction, but at a strong electric
field, the particle moves little in the z direction.

suggested power rule between the effective viscosity and
the shear rate may apply [16]. However, for the simula-
tions at this stage it becomes very difficult to produce re-
peatable results. A further investigation is needed.

D. Structural change

All these changes of rheology with the field can be re-
lated to the change of structure of the polarizable fluid
under an electric field. Although the work reported here
focuses on the effective viscosity, we have paid some at-
tention to the movements of particles.

In Fig. 8, we plot a typical particle motion in the z
direction at different electric fields. For a small electric
field, such as A=35, the particles wander up and down in
the z direction while drifting along the x direction. This
characterizes a diffusive motion which provides a
momentum transfer between different layers. This
motion behavior explains why the liquid is a Newtonian
fluid. At a strong electric field, such as at A=90, the par-
ticle has little motion in the z direction.

In Fig. 9, we plot an instant microscopic flow structure
at A=35. In order to have a clear view, we only show a
slab of the flow, parallel to the x-z plane. It is clear there
that the system has no obvious ordering; therefore, it is a
Newtonian liquid.

At A=70 the particles do not wander in the z direc-
tion, although we see some oscillations around its equilib-
rium position in the z direction. The instant microscopic
flow structure is shown in Fig. 10. The flow has tilted
chains and broken chains. These chains are distinct and
well separated. The tilting is caused by the sheared
motion. This indicates that the dipolar interactions play
a much more important role than the diffusion now.
Therefore, the fluid shows non-Newtonian behavior.

At A=90 the particles are tightly bound to their equi-
librium position in the z direction with very small fluctua-
tions. The dominant contribution to the viscosity is the
dipolar interactions. The microscopic flow structure
shows chains condensed (Fig. 11). In fact, a number of
chains are clinging to each other to form a thick and
stable structure. This structure provides a yield stress to
the system and hysteresis.

In concluding our paper, we should point out that our

A=35

FIG. 9. An instant slab of flow at A=35, parallel to the x-z
plane. The system has no obvious ordering. Length unit is a.
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A=70

FIG. 10. An instant slab of flow at A=70, parallel to the x-z
plane. There are tilted chains and broken chains, well separated.
Length unit is a.

simulations were performed on an IBM vectorized super-
computer; a system of 140 particles in the simulations is
small in comparison to a real system. However, to tackle
a much larger system on our present computer is almost
formidable. In order to see the finite size effect, we have
done some experiments. For example, we have conducted
simulations under different L, and L, while L.L, ie.,
the volume fraction, remains unchanged. Since the
viscosity of the new system has little change, the finite
size effect seems to be insignificant. Therefore, we believe
that our numerical results can provide some insight to ex-
periments and be served as a base for future analytical
work.

In addition, the volume fraction 16.4% in our simula-
tions is low. If the volume fraction increases, the dipole

FIG. 11. An instant slab of flow at A=90, parallel to the x-z
plane. A number of chains are clinging to each other to form a
thick and stable structure. Length unit is a.

model will be limited. However, we expect that the three
stages in the viscosity change are still valid. However, it
is conceivable that with the fluid at a higher volume frac-
tion it will be easier to show non-Newtonian behavior
and have a yield stress. The relationship between the flow
structure and viscosity change should be further investi-
gated.
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